Fuzzy clustering of spatial binary data

نویسندگان

  • Mô Dang
  • Gérard Govaert
چکیده

An iterative fuzzy clustering method is proposed to partition a set of multivariate binary observation vectors located at neighboring geographic sites. The method described here applies in a binary setup a recently proposed algorithm, called Neighborhood EM, which seeks a a partition that is both well clustered in the feature space and spatially regular [2]. This approach is derived from the EM algorithm applied to mixture models [9], viewed as an alternate optimization method [12]. The criterion optimized by EM is penalized by a spatial smoothing term that favors classes having many neighbors. The resulting algorithm has a structure similar to EM, with an unchanged M-step and an iterative E-step. The criterion optimized by Neighborhood EM is closely related to a posterior distribution with a multilevel logistic Markov random field as prior [5, 10]. The application of this approach to binary data relies on a mixture of multivariate Bernoulli distributions [11]. Experiments on simulated spatial binary data yield encouraging results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Natural Clusters Information to Build Fuzzy Indexing Structure

Efficient and accurate information retrieval is one of the main issues in multimedia databases. However, the key for this is how to build an efficient indexing structure. In this paper, we demonstrate how to use a fuzzy clustering algorithm, Sequential Fuzzy Competitive Clustering (SFCC), to get the natural clusters information from the data. Then use the information to build an efficient index...

متن کامل

A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data

The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...

متن کامل

Clustering of Fuzzy Data Sets Based on Particle Swarm Optimization With Fuzzy Cluster Centers

In current study, a particle swarm clustering method is suggested for clustering triangular fuzzy data. This clustering method can find fuzzy cluster centers in the proposed method, where fuzzy cluster centers contain more points from the corresponding cluster, the higher clustering accuracy. Also, triangular fuzzy numbers are utilized to demonstrate uncertain data. To compare triangular fuzzy ...

متن کامل

Research on Cluster Analysis of High Dimensional Space Based on Fuzzy Extension

Traditional spatial data are generally high dimensional features, and in the clustering of high dimensional data can be directly applied to data processing because of Dimension effect and the data sparseness problem. For CLIQUE algorithm, which usually have the problem such as prone to non-axis direction of overclustering, boundary judgment of fuzzy clustering and smoothing clustering. In this ...

متن کامل

A New Spatial Fuzzy C-Means for Spatial Clustering

Fuzzy C-means is a widely used clustering algorithm in data mining. Since traditional fuzzy C-means algorithms do not take spatial information into consideration, they often can’t effectively explore geographical data information. So in this paper, we design a Spatial Distance Weighted Fuzzy C-Means algorithm, named as SDWFCM, to deal with this problem. This algorithm can fully use spatial feat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Kybernetika

دوره 34  شماره 

صفحات  -

تاریخ انتشار 1998