Fuzzy clustering of spatial binary data
نویسندگان
چکیده
An iterative fuzzy clustering method is proposed to partition a set of multivariate binary observation vectors located at neighboring geographic sites. The method described here applies in a binary setup a recently proposed algorithm, called Neighborhood EM, which seeks a a partition that is both well clustered in the feature space and spatially regular [2]. This approach is derived from the EM algorithm applied to mixture models [9], viewed as an alternate optimization method [12]. The criterion optimized by EM is penalized by a spatial smoothing term that favors classes having many neighbors. The resulting algorithm has a structure similar to EM, with an unchanged M-step and an iterative E-step. The criterion optimized by Neighborhood EM is closely related to a posterior distribution with a multilevel logistic Markov random field as prior [5, 10]. The application of this approach to binary data relies on a mixture of multivariate Bernoulli distributions [11]. Experiments on simulated spatial binary data yield encouraging results.
منابع مشابه
Using Natural Clusters Information to Build Fuzzy Indexing Structure
Efficient and accurate information retrieval is one of the main issues in multimedia databases. However, the key for this is how to build an efficient indexing structure. In this paper, we demonstrate how to use a fuzzy clustering algorithm, Sequential Fuzzy Competitive Clustering (SFCC), to get the natural clusters information from the data. Then use the information to build an efficient index...
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملClustering of Fuzzy Data Sets Based on Particle Swarm Optimization With Fuzzy Cluster Centers
In current study, a particle swarm clustering method is suggested for clustering triangular fuzzy data. This clustering method can find fuzzy cluster centers in the proposed method, where fuzzy cluster centers contain more points from the corresponding cluster, the higher clustering accuracy. Also, triangular fuzzy numbers are utilized to demonstrate uncertain data. To compare triangular fuzzy ...
متن کاملResearch on Cluster Analysis of High Dimensional Space Based on Fuzzy Extension
Traditional spatial data are generally high dimensional features, and in the clustering of high dimensional data can be directly applied to data processing because of Dimension effect and the data sparseness problem. For CLIQUE algorithm, which usually have the problem such as prone to non-axis direction of overclustering, boundary judgment of fuzzy clustering and smoothing clustering. In this ...
متن کاملA New Spatial Fuzzy C-Means for Spatial Clustering
Fuzzy C-means is a widely used clustering algorithm in data mining. Since traditional fuzzy C-means algorithms do not take spatial information into consideration, they often can’t effectively explore geographical data information. So in this paper, we design a Spatial Distance Weighted Fuzzy C-Means algorithm, named as SDWFCM, to deal with this problem. This algorithm can fully use spatial feat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Kybernetika
دوره 34 شماره
صفحات -
تاریخ انتشار 1998